Saturday, August 28, 2010

Complicated Mechanism Explained via Simple Animations

Complicated Mechanism Explained via Simple Animations:


Radial Engines
Radial engines are used in aircrafts having propeller connected to the shaft delivering power in order to produce thrust its basic mechanism is as follows

Steam engine Principle

Steam engine once used in locomotives was based on the reciprocating principle as shown below
Sewing Machine

Maltese Cross Mechanism

this type of mechanism is used in clocks to power the second hand movement.

Manual Transmission Mechanism

The mechanism also called as “stick shift” is used in cars to change gears mannually

Constant Velocity Joint

This mechanism is used in the front wheel drive cars
Constant-velocity joints (aka homokinetic or CV joints) allow a drive shaft to transmit power through a variable angle, at constant rotational speed, without an appreciable increase in friction or play. They are mainly used in front wheel drive and all wheel drive cars. Rear wheel drive cars with independent rear suspension typically use CV joints at the ends of the rear axle halfshafts, and increasingly use them on the propshafts.

Torpedo-Boat destroyer System

This system is used to destroy fleet in naval military operations.

Rotary Engine

Also called as Wankel engine is a type of internal combustion engine has a unique design that converts pressure into rotating motion instead of reciprocating pistons


ZIP




Proving the Pythagorean Theorem Through Rearrangement


How an Alpha Stirling Engine Works
A Stirling engine is a heat engine operating by cyclic compression and expansion of air or other gas, the working fluid, at different temperature levels such that there is a net conversion of heat energy to mechanical work. Or more specifically, a closed-cycle regenerative heat engine with a permanently gaseous working fluid, where closed-cycle is defined as a thermodynamic system in which the working fluid is permanently contained within the system, and regenerative describes the use of a specific type of internal heat exchanger and thermal store, known as the regenerator. It is the inclusion of a regenerator that differentiates the Stirling engine from other closed cycle hot air engines.

How a Hypotrochoid is Made

A hypotrochoid is a roulette traced by a point attached to a circle of radius r rolling around the inside of a fixed circle of radius R, where the point is a distance d from the center of the interior circle.


Illustrating Pi: Unrolling a Circle’s Circumference


How the Sun and Planet Gear Works

The sun and planet gear (also called the planet and sun gear) was a method of converting reciprocal motion to rotary motion and was utilised in a reciprocating steam engine. It was invented by the Scottish engineer William Murdoch, an employee of Boulton and Watt, but was patented by James Watt in October 1781. It was invented to bypass the patent on the crank, held by James Pickard. It played an important part in the development of devices for rotation in the Industrial Revolution.


How a Pill Press Works


Tablet press is a mechanical device that compresses powder into tablets of uniform size and weight. A press can be used to manufacture tablets of a wide variety of materials, including pharmaceuticals, illicit drugs such as MDMA, cleaning products, and cosmetics. To form a tablet, the granulated material must be metered into a cavity formed by two punches and a die, and then the punches must be pressed together with great force to fuse the material together.



Knight’s Tour: How a Knight Visits Every Square Once

A knight’s tour is a sequence of moves of a knight on a chessboard such that the knight visits every square exactly once. The exact number of open tours on an 8×8 chessboard is still unknown.

Creating a program to find a knight’s tour is a common problem given to computer science students. Variations of the knight’s tour problem involve chessboards of different sizes than the usual 8 × 8, as well as irregular (non-rectangular) board


How Walschaerts Valve Gear in Steam Locomotives Works
The Walschaerts valve gear is a type of valve gear invented by Belgian railway mechanical engineer Egide Walschaerts in 1844 used to regulate the flow of steam to the pistons in Steam Engines. The gear is sometimes named without the final “s”, since it was incorrectly patented under that name. It was extensively used in steam locomotives from the late 19th century until the end of the steam era.

What a Tesseract (4D Cube) Looks Like

In geometry, the tesseract, also called an 8-cell or regular octachoron or cubic prism, is the four-dimensional analog of the cube; the tesseract is to the cube as the cube is to the square. Just as the surface of the cube consists of 6 square faces, the hypersurface of the tesseract consists of 8 cubical cells.


How Circle Strafing Works
In video games, strafing is the technique of moving the player’s character from side to side, rather than forward and backward. Circle strafing is the technique of moving around a target in a circle while facing it. Circle strafing allows a player to fire continuously at an opponent while dodging counterattacks. By rapidly circling the opponent, the player evades the opponent’s sights.

How a Caliper Works

Wednesday, August 25, 2010

Using Einstein's Relativity to Speed up Supercomputer Simulations 10,000%

Using Einstein's Relativity to Speed up Supercomputer Simulations 10,000%



Physicists realized it's not the algorithm or the hardware, but the reference frame that needed an update.
Sometimes when you need to break a computational log-jam, what's required isn't more power, but a conceptual breakthrough. And sometimes that breakthrough comes directly from the work of Albert Einstein.
In this case, the problem at hand is the simulation of lasers hitting plasmas - which is one of those bleeding-edge areas of physics that could lead to, according to a2008 summary of the field, "proton therapy for the treatment of cancers, materials characterization, radiation-driven chemistry, border security through the detection of explosives, narcotics and other dangerous substances, and of course high-energy particle physics."
Or in other words, desktop particle accelerators.
But before we can build accelerators as capable as CERN's Large Hadron Collider in the comfort of our underground lairs, we first have to use computers to model the behavior of these so-called "laser-plasma accelerators."
Even on the world's 17th fastest supercomputer, this turns out to be a Herculean task.
And here comes the breakthrough: Physicists realized that because the laser is accelerating electrons in its path to nearly the speed of light, Relativistic effects start to be a big deal - the same effects first discovered by Albert Einstein.
And if we remember anything from A Brief History of Time or even the original Planet of the Apes, it's that at speeds approaching the speed of light, where the observer is standing has a huge impact on what they perceive - this is, for example, the reason that an astronaut traveling close to the speed of light would age much slower than the people he or she left behind on earth.
Previously, all simulations of laser-plasma accelerators were run from the perspective of a physicist standing somewhere in the vicinity of the experiment - in other words, someone who sees a super short laser pulse traveling at a near-stationary plasma. Mathematically, this is very hard to simulate - the laser is brief.
But what if, instead, we take the perspective of the plasma itself? Now, relative to the laser, it's as if the plasma is traveling toward the beam of light at near-light speed. Because of relativistic effects, this stretches out the beam of the laser, making it longer and mathematically more tractable to simulate.
Voila - the resulting algorithm is hundreds of times faster than previous attempts to simulate a laser-plasma accelerator

Site Search